Atomic force microscopy visualization of hard segment alignment in stretched polyurethane nanofibers prepared by electrospinning

نویسندگان

  • Hiroaki Sakamoto
  • Hitoshi Asakawa
  • Takeshi Fukuma
  • Satoshi Fujita
  • Shin-ichiro Suye
چکیده

Molecular-level orientation within nanofibers has been attracting attention as a tool for controlling and designing highly functional nanofibers. In this study, we used atomic force microscopy to visualize the phase separation between soft and hard segments on a polyurethane (PU) nanofiber surface prepared by electrospinning. Furthermore, the stretched nanofibers prepared with a high-speed rotating collector were found to have a different phase distribution in the phase-separated structure, with the hard segment domains aligned to the fiber axis. In contrast, unstretched PU nanofibers prepared without rotation were observed to have nonuniformly distributed segments. These results indicate that the application of an intense elongation force along the nanofiber axis with a rotating mandrel collector changed the distribution of segment alignments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of the electrospinning process of polyurethane nanofibers and their filtration performance for use in respiratory protection mask filters

Background and Aim: Electrospun nanofibers can be used to produce filter media in personal protective equipment for the military. The present study aimed to optimize the electrospinning process used to create polyurethane nanofiber substrates and compare the optimum substrate filtration performance with a typical commercial substrate used in the structure of N95 respirators. Methods: In this ex...

متن کامل

Hydroxyapatite Mineralization on the Calcium Chloride Blended Polyurethane Nanofiber via Biomimetic Method

Polyurethane nanofibers containing calcium chloride (CaCl2) were prepared via an electrospinning technique for the biomedical applications. Polyurethane nanofibers with different concentration of CaCl2 were electrospun, and their bioactivity evaluation was conducted by incubating in biomimetic simulated body fluid (SBF) solution. The morphology, structure and thermal properties of the polyureth...

متن کامل

AFM-based voltage assisted nanoelectrospinning

This paper describes an atomic force microscope (AFM) based voltage-assisted electrospinning technique. Single nanofibers on substrates are prepared via simultaneous preparation and deposition. In this work, an AFM-based electrospinning process is developed to generate polyethylene oxide (PEO) polymeric single fibers with nanometer scale diameters. The results demonstrate the feasibility of thi...

متن کامل

Comparing Two Electrospinning Methods in Producing Polyacrylonitrile Nanofibrous Tubular Structures with Enhanced Properties

Polyacrylonitrile nanofibrous tubular structures were produced through typical and opposite charge electrospinning methods and the effect of the method as well as the two key electrospinning parameters, namely concentration of the electrospinning polymer solution and rotational speed of mandrel collector on properties of such tubular structures were studied. The smples were characterized by...

متن کامل

Facile preparation of antibacterial, highly elastic silvered polyurethane nanofiber fabrics using silver carbamate and their dermal wound healing properties.

In this study, polycarbonate diol/isosorbide-based antibacterial polyurethane nanofiber fabrics containing Ag nanoparticles were prepared by electrospinning process. Bio-based highly elastic polyurethane was prepared from hexamethylene diisocyanate and isosorbide/polycarbonate diol (8/2) by a simple one-shot bulk polymerization. Ag nanoparticles were formed using simple thermal reduction of sil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014